Care for A Glass of Tel Aviv Air?

Written on | ,

TAU study shows atmospheric water vapor in the city is suitable for drinking.

The best things in life are allegedly free, and a first-of-its-kind study in the world conducted at Tel Aviv University supports this belief. Researchers have found that nature’s very own champagne, generated from the air in the heart of an urban area, the city of Tel Aviv, complies with all of the strict drinking water standards set both by the State of Israel and by the World Health Organization. Have we finally found a solution to the global drinking water scarcity?

Like the Air that We Breathe

The constantly growing global shortage of clean drinking water requires thinking outside the box – and developing new technologies for producing potable water. The Earth’s atmosphere is a vast and renewable source of water, which may be an alternative drinking water resource. Our atmosphere contains billions of tons of water, 98% of which is in a gaseous state – that is, water vapor.

The study was conducted by a team of experts from the hydrochemistry laboratory at the Porter School of the Environment and Earth Sciences at Tel Aviv University, led by graduate student Offir Inbar and supervised by Prof. Dror Avisar, Head of TAU’s Moshe Mirilashvili Institute for Applied Water Studies. Also participating in the study was Watergen’s research and development team, Prof. Alexandra Chudnovsky, and leading researchers from Germany. The study’s results were published in two leading journals: Science of the Total Environment and Water.

Wind Flavored Water

Offir Inbar explains that this is the first study in the world to examine air pollution through its effect on drinking water generated from the air. No filtration or treatment system was installed in the device used in the study; the water that was produced was the water that was obtained from the air. The researchers performed a wide range of advanced chemical analyses of the water, and found that in the vast majority of cases, including during different seasons and at different times of the day, the water extracted from the air in the heart of Tel Aviv was safe to drink. In addition, with the help of a variety of innovative technologies for monitoring the composition of the atmosphere and by applying advanced statistical methods, for the first time the researchers were able to quantitatively link the process the air goes through in the days leading up to the point of water production and the chemical composition of the dew.

 

Tel Aviv –  a source of clean drinking water?

Offir Inbar explains: “The study showed that wind direction greatly affects water quality. When the wind comes from the desert, we find more calcium and sulfur – residues of desert dust aerosols – in the water. When the wind comes from the direction of the sea, we find higher concentrations of chlorine and sodium. We also found that the distant sources of the air, prior to when it reached the point of water production, can be identified in the water. Thus, water produced from air coming from the Sahara region differs in composition from water produced from air coming from Europe.”

Water quality is also affected by anthropogenic pollution from transportation and industry. “Using advanced methods, we found a direct link between the concentrations of ammonia, nitrogen oxides and sulfur dioxide in the air and the concentration of their decomposition products in water,” says Inbar. “We found low concentrations of copper, potassium, and zinc in the water, which probably come from manmade pollution.

Minerals Should be Added

The chemical link we found between the meteorological parameters and the composition of the water makes it possible for the first time to study the atmosphere using water extracted from it. This link allows us to know what minerals should be added to water extracted from air in order to provide people with quality drinking water. In general, we found that potable water from air does not contain enough calcium and magnesium – and it is advisable to add these minerals to the water, just like they are added to desalinated drinking water in some countries.”

A significant portion of the water we drink in Israel today is desalinated seawater – a solution which Inbar says is only a partial solution, and not one that can provide drinking water to the vast majority of the world’s population. “In order to desalinate seawater, you need a sea. The sea, however, is not accessible from every place in the world,” says Inbar. “After desalination, a complete infrastructure must be built to carry the desalinated water from the waterfront to the various towns, and large parts of the world don’t possess the engineering and economic means for that. Water from the air can be produced anywhere, with no need for expensive transport infrastructure and regardless of the amount of precipitation. From an economic perspective, the higher the temperature and humidity, the more cost-effective the production of water from the air is.”

Devices for generating water from the air that include water purification and treatment systems are already in use in a lot of countries, and provide quality drinking water to people living in distressed areas. “The concern in this case was that water produced from air in the heart of an urban area would not be suitable for drinking. We have proved that this is not the case,” Inbar concludes. “We are currently expanding our research to other areas in Israel, including the Haifa Bay and agricultural areas, in order to investigate in depth, the impact of various pollutants on the quality of water extracted from the air.”

 

Featured image:Offir Inbar enjoys a glass of Tel Aviv atmosphere derived water in the lab

Related posts

Seahorses – Slow, but Fierce

October 6, 2021

Why Do We Squabble Over The AC?

October 5, 2021

A House is Not a Home Without a Pet

October 4, 2021

Fighting Pollution With Seaweed

September 12, 2021

Where Have All the Birds Gone?

August 11, 2021

Diminishing at the Edges

August 3, 2021

This Exhibition Will Make You Sweat

August 2, 2021

He’s Bringing Plastic Back

August 2, 2021

Tel Aviv Bats Have More Fun

July 22, 2021

When the stars aligned: A star in a distant galaxy blew up in a powerful explosion, solving an astronomical mystery from the 11th century

July 15, 2021

We Are Part of the Problem and the Solution

June 10, 2021

Bats ‘Social Distance’ Too

June 6, 2021

Time Flies and So Do Bats

May 31, 2021

When One Becomes Three

May 19, 2021

Our Planet in the Hands of Academia

May 12, 2021

Fireflies’ Protective ‘Musical Armor’ Against Bats

May 12, 2021

An Underwater Salute to Grandma Vera

April 8, 2021

Struggling in a Toxic Workplace?

April 6, 2021

Robot “Hears” through the Ear of a Locust

March 4, 2021

Tel Aviv’s Ecological Oasis: The Yehuda Naftali Botanic Garden at TAU

January 31, 2021

New Study Presents A Gloomy Climate Future for the Middle East

January 21, 2021

An Underwater Journey Following the Vanishing of Sponge Species from the Shallow Water of the Israeli Coast

December 1, 2020

Why Do Bats Fly Into Walls?

November 10, 2020

Prince of Monaco to TAU: Together, We Can Fix Environment

October 1, 2020

Pharmaceutical residuals pose a serious threat to Marine life

August 19, 2020

What Disrupted A Giant Black Hole’s Feast?

August 10, 2020

Bats navigate just like humans – using their excellent eyesight and a cognitive map

July 12, 2020

Turning vapor into electricity?

June 8, 2020

Rethinking our plan(e)t

February 19, 2020

Pope welcomes Israeli, Jordanian, Palestinian bird experts

June 11, 2019

Discovery of a binary star orbited by three planets

May 6, 2019

Over 400 People Attend Launch of “Astronomy on Tap”

April 22, 2019

Inside a bat’s brain

February 13, 2019

Conversations in the Clean Room

February 13, 2019

Inside a bat’s brain

February 13, 2019

TAU-led team discovers new way black holes are “fed”

January 24, 2019

Pursuing the Unknown

Copyright ©  Tel Aviv University Trust. All rights reserved.
Registered charity number 314179.