Global first at TAU: MRI scan of the brains of 130 species of mammals, including humans, indicates equal connectivity in all of them

Written on | ,

The research reveales a universal Law: Conservation of Brain Connectivity

Researchers at Tel Aviv University, led by Prof. Yaniv Assaf of the School of Neurobiology, Biochemistry and Biophysics and the Sagol School of Neuroscience and Prof. Yossi Yovel of the School of Zoology, the Sagol School of Neuroscience, and the Steinhardt Museum of Natural History, conducted a pioneering study – first of its kind in the world: advanced diffusion MRI scans of the brains of mammals representing about 130 species, designed to investigate brain connectivity. The intriguing results, contradicting widespread conjectures, revealed that brain connectivity levels are equal in all mammals, including humans.

Prof. Assaf: “We discovered that brain connectivity (namely the efficiency of information transfer through the neural network) does not depend on either the size or structure of any specific brain. In other words, the brains of all mammals – from tiny mice through humans to large bulls and dolphins – exhibit equal connectivity, and information travels with the same efficiency within them. We also found that the brain preserves this balance via a special compensation mechanism: when connectivity between the hemispheres is high, connectivity within each hemisphere is relatively low, and vice versa.”

Participants included researchers from the Kimron Veterinary Institute in Beit Dagan, the Blavatnik School of Computer Science at TAU and the Technion’s Faculty of Medicine. The paper was published in Nature Neuroscience in June 2020.

Prof. Assaf explains: “Brain connectivity is a central feature, critical to the functioning of the brain. Many scientists have assumed that connectivity in the human brain is significantly higher compared to other animals, as a possible explanation for the superior functioning of the ‘human animal’.” On the other hand, according to Prof. Yovel, “We know that key features are conserved throughout the evolutionary process. Thus, for example, all mammals gave four limbs. In this project we wished to explore the possibility that brain connectivity may be a key feature of this kind – maintained in all mammals regardless of their size or brain structure. To this end we used advanced research tools.”

 

Intelligent mammals

Size doesn’t count

The project began with advanced diffusion MRI scans of the brains of about 130 mammals – each representing a different species (It must be noted that all brains were removed from dead animals, and no animals were put down for the purposes of this study). The brains, obtained from the Kimron Veterinary Institute, represented a very wide range of mammals – from tiny bats weighing 10 grams to dolphins whose weight can reach hundreds of kilograms. Since the brains of about 100 of these mammals had never been MRI-scanned before, the project generated a novel and globally unique database. The brains of 32 living humans were also scanned in the same way. The unique technology, which detects the white matter in the brain, enabled the researchers to reconstruct the neural network: the neurons and their axons (nerve fibers) through which information is transferred, and the synapses (junctions) where they meet.

The next challenge was comparing the scans of different types of animals, whose brains vary greatly in size and/or structure.  For this purpose the researchers employed tools from Network Theory, a branch of mathematics that allowed them to create and apply a uniform gage of brain conductivity: the number of synopses a message must cross to get from one location to another in the neural network.

Prof. Assaf explains: “A mammal’s brain consists of two hemispheres connected to each other by a set of neural fibers (axons) that transfer information. For every brain we scanned we measured four connectivity gages: connectivity in each hemisphere (intrahemispheric connections), connectivity between the two hemispheres (interhemispheric) and overall connectivity. We discovered that overall brain connectivity remains the same for all mammals, large or small, including humans. In other words: information travels from one location to another through the same number of synopses. It must be clarified, however, that different brains use different strategies to preserve this equal measure of overall connectivity: some exhibit strong interhemispheric connectivity and weaker connectivity within the hemispheres, while others display the opposite.”

Prof. Yovel describes another interesting discovery: “We found that variations in connectivity compensation characterize not only different species but also different individuals within the same species. In other words, the brains of some rats, bats or humans exhibit higher interhemispheric connectivity at the expense of connectivity within the hemispheres, and the other way around – compared to others of the same species. It would be fascinating to hypothesize how different types of brain connectivity may affect various cognitive functions or human capabilities such as sports, music or math. Such questions will be addressed in our future research.”

A New universal law

Prof. Assaf concludes: “Our study revealed a universal Law: Conservation of Brain Connectivity. This Law denotes that the efficiency of information transfer in the brain’s neural network is equal in all mammals, including humans. We also discovered a compensation mechanism which balances the connectivity in every mammalian brain. This mechanism ensures that high connectivity in a specific area of the brain, possibly manifested through some special talent (e.g. sports or music) is always countered by relatively low connectivity in another part of the brain. In future projects we will investigate how the brain compensates for the enhanced connectivity associated with specific capabilities and learning processes.”

Related posts

Can’t Multitask Anymore?

October 6, 2021

Why Do We Squabble Over The AC?

October 5, 2021

The Immune System’s Double Agents

October 5, 2021

Help A Friend Out?

September 30, 2021

Using ‘Good’ Bacteria to Fight ‘Bad’ Bacteria

September 29, 2021

Recruiting ‘Fighting Cells’ to Destroy Tumors

September 14, 2021

TAU Team Reverses Early Signs of Alzheimer’s

September 10, 2021

Nicotine Testing of Children Curbs Parents’ Smoking

September 5, 2021

Want to Fall in Love? Step Outside in The Sun

August 31, 2021

The Silent Prophets

August 31, 2021

First 3D-bioprinting of entire active tumor

August 18, 2021

New Warning Sign for Breast Cancer

August 6, 2021

COVID-19 Immunity Varies Among Genders and Age Groups

July 26, 2021

Tel Aviv Bats Have More Fun

July 22, 2021

New study found differences between women and men in the level of COVID-19 antibodies

July 15, 2021

A world first: Technology that restores the sense of touch in nerves damaged as a result of amputation or injury

July 15, 2021

TAU Medical Student to Swim for Israel at Summer Olympics

July 15, 2021

New nanotech from TAU produces “healthy” electric current from the human body itself

July 9, 2021

Introducing the world’s thinnest technology – only two atoms thick

July 2, 2021

Want to Live a Long Life? Consider Investing in Your Marriage.

July 2, 2021

A world first: Targeted delivery of therapeutic RNAs only to cancer cells, with no harm caused to healthy cells

June 30, 2021

Combating Antibiotic Resistance

June 22, 2021

Diamonds in the Rough

June 3, 2021

How Will We Brave the Post-COVID Era?

May 31, 2021

Are We Getting to the Root of Cancer?

May 3, 2021

Optical Technology Generates Immediate Melanoma Diagnosis

April 27, 2021

Gut Healing

April 25, 2021

Could Your Smartphone Be Damaging Your Teeth?

April 4, 2021

The Quest for A Lifesaving Cure

March 16, 2021

A Healthier Alternative to Antibiotics

February 24, 2021

Children with Autism during Lockdown: Serious Implications for Behavior and Development

February 22, 2021

Cancer Breakthrough: Cells’ Uniqueness is Also Weakness

January 29, 2021

Two TAU Professors Win 2020 Nature Mentoring Award

December 28, 2020

COVID-19 Takes TAU’s Legal Clinics into High Gear

December 7, 2020

Lack of Teacher Support during Pandemic Causes Acute Emotional Harm

December 4, 2020

New Discovery: Development of the Inner Ear in Embryos is Similar to Crystal Formation

November 26, 2020

In First, Aging Stopped in Humans: TAU Co-Study

November 23, 2020

TAU developed genome editing system destroys cancer cells

November 20, 2020

TAU Co-Study: “Green Revolution” Decreased Infant Mortality

November 17, 2020

Study: Women Suffer More from COVID-related Orofacial Pain

November 12, 2020

TAU Prof. Wins Schmidt Science Polymath Award

October 26, 2020

Global First: Center for Combating Pandemics

October 22, 2020

Researchers Identified the Genetic Causes of Inherited Hearing Loss in the Jewish Population of Israel

September 30, 2020

Targeting Melanoma

September 9, 2020

TAU Inaugurates Shmunis School of Biomedicine and Cancer Research

September 8, 2020

How the parents’ environment impacts the lives of their offspring

September 2, 2020

Does our Brain like risk?

August 31, 2020

Physical exercise can help improve both physical and mental health

August 31, 2020

New school for Biomedicine and Cancer Research at Tel Aviv University

August 13, 2020

Tel Aviv University Scientists Successfully Reduce Metastatic Spread Following Tumor Removal Surgery

August 11, 2020

Pursuing the Unknown

Copyright ©  Tel Aviv University Trust. All rights reserved.
Registered charity number 314179.