Hitting Rock Bottom?

Written on | ,

First meta-analysis of its kind shows warming of Mediterranean Sea causes marine species to migrate.

As has been heavily discussed at the recent the UN Climate Change Conference (COP26) in Glasgow, our entire planet has been warming in recent decades. This process has been particularly marked in the Mediterranean Sea, where the average water temperature rises by one degree every thirty years, and the rate is only accelerating. One of the urgent questions that must be asked is how, if at all, the various species living in the Mediterranean will adapt to this sudden warming.

In recent years, evidence has accumulated that some species have deepened their habitats in order to adapt to global warming, while other studies have found that species are limited in their ability to deepen into cooler water. A new TAU study shows that there are species of marine animals such as fish, crustaceans and mollusks (for example squid) that change their habitats and deepen an average of 55 meters across the climatic gradient of the Mediterranean (spanning a range of 60 C) to live in cooler waters.

The Mediterranean – An Ideal Test Case

“It should be remembered that the Mediterranean was hot in the first place, and now we are reaching the limit of many species’ capacity,” explains Prof. Jonathan Belmaker from the School of Zoology in The George S. Wise Faculty of Life Sciences. “Moreover, the temperature range in the Mediterranean is extreme – cold in the northwest and very hot in the southeast. Both of these factors make the Mediterranean an ideal test case for species’ adaptation to global warming.”

The groundbreaking study was led by PhD student Shahar Chaikin under the supervision of Prof. Jonathan Belmaker, and along with researchers Shahar Dubiner, all from the School of Zoology in The George S. Wise Faculty of Life Sciences and The Steinhardt Museum of Natural History at Tel Aviv University. The results of the study were published in the journal Global Ecology and Biogeography, and have far-reaching implications for both fishing and future marine nature reserves.

Life at the Bottom

Cause for Preparation

The results of the study have many implications for the future, in the Mediterranean and in general, given that the response of each species to rising temperatures can be predicted according to its traits, such as temperature preference. This, for the first time, offers researchers the opportunity to forecast changes in the composition of the marine community, as well as for the public the opportunity to prepare for these changes accordingly.

“Our research clearly shows that species do respond to climate change by changing their depth distribution,” Chaikin concludes, “and when we think about the future, decision-makers will have to prepare in advance for the deepening of species. For example, future marine nature reserves will need to be defined so that they can also provide shelter to species that have migrated to greater depths. And on the other hand, fishing in the future will involve fishing the same fish at greater depths, which means sailing further into the sea and burning more fuel.”

So, How Deep is Our Love?

In the framework of the study, the Tel Aviv University researchers conducted a meta-analysis of data on the depth distribution of 236 marine species collected in previous bottom-trawl surveys. The data collected revealed for the first time that species deepen their minimum depth limits in parallel with warming seawater temperatures, from the west to the east Mediterranean, and on average deepen 55 meters across the Mediterranean (a range of 60 C).

However, the pattern of deepening is not uniform between species: cold-water species were found to deepen significantly more than warm-water species, species that live along a narrow depth range deepen less than species that live along a wide depth gradient, and species that can function within in a wider temperature range deepen more than those who can function only within a narrow temperature range.

“Various studies collect fishing data from trawling – that is, a boat that drags a net along the seabed and collects various species – and these studies often also measure the depth at which the species were caught in the net,” says Shahar Chaikin. “We cross-referenced these data with water temperature data, and by analyzing 236 different species we came to a broad and compelling conclusion: there has been a deepening of the depth limits of species’ habitats. The minimum depths for species in the Mediterranean are getting deeper, while the maximum depths remain stable. The deepening effect was found to be more significant among cold-water species. In contrast, there are species that function within a narrow temperature range and at a certain depth that deepen much less, probably because they cannot survive in deeper water.”

 

“Even if species deepen to escape the warm waters and this rapid adaptation helps them, there is still a limit – and that limit is the seabed,” adds Prof. Belmaker. “We are already seeing deep-sea fish like cod whose numbers are declining, probably because they had nowhere deeper to go.”

Related posts

Climate Action: From Campus to Glasgow

November 26, 2021

How Do Bats Get Street-Smart?

November 23, 2021

TAU Initiates Model for Carbon Neutrality

November 11, 2021

Like Teenagers on Vacation

November 3, 2021

Between Climate Change, Space Research and Life under Extreme Conditions

October 21, 2021

Seahorses – Slow, but Fierce

October 6, 2021

Why Do We Squabble Over The AC?

October 5, 2021

A House is Not a Home Without a Pet

October 4, 2021

Fighting Pollution With Seaweed

September 12, 2021

Where Have All the Birds Gone?

August 11, 2021

Diminishing at the Edges

August 3, 2021

This Exhibition Will Make You Sweat

August 2, 2021

He’s Bringing Plastic Back

August 2, 2021

Tel Aviv Bats Have More Fun

July 22, 2021

When the stars aligned: A star in a distant galaxy blew up in a powerful explosion, solving an astronomical mystery from the 11th century

July 15, 2021

Care for A Glass of Tel Aviv Air?

June 24, 2021

We Are Part of the Problem and the Solution

June 10, 2021

Bats ‘Social Distance’ Too

June 6, 2021

Time Flies and So Do Bats

May 31, 2021

When One Becomes Three

May 19, 2021

Our Planet in the Hands of Academia

May 12, 2021

Fireflies’ Protective ‘Musical Armor’ Against Bats

May 12, 2021

An Underwater Salute to Grandma Vera

April 8, 2021

Struggling in a Toxic Workplace?

April 6, 2021

Robot “Hears” through the Ear of a Locust

March 4, 2021

Tel Aviv’s Ecological Oasis: The Yehuda Naftali Botanic Garden at TAU

January 31, 2021

New Study Presents A Gloomy Climate Future for the Middle East

January 21, 2021

An Underwater Journey Following the Vanishing of Sponge Species from the Shallow Water of the Israeli Coast

December 1, 2020

Why Do Bats Fly Into Walls?

November 10, 2020

Prince of Monaco to TAU: Together, We Can Fix Environment

October 1, 2020

Pharmaceutical residuals pose a serious threat to Marine life

August 19, 2020

What Disrupted A Giant Black Hole’s Feast?

August 10, 2020

Bats navigate just like humans – using their excellent eyesight and a cognitive map

July 12, 2020

Turning vapor into electricity?

June 8, 2020

Rethinking our plan(e)t

February 19, 2020

Pope welcomes Israeli, Jordanian, Palestinian bird experts

June 11, 2019

Discovery of a binary star orbited by three planets

May 6, 2019

Over 400 People Attend Launch of “Astronomy on Tap”

April 22, 2019

Inside a bat’s brain

February 13, 2019

Conversations in the Clean Room

February 13, 2019

Inside a bat’s brain

February 13, 2019

TAU-led team discovers new way black holes are “fed”

January 24, 2019

Pursuing the Unknown

Copyright ©  Tel Aviv University Trust. All rights reserved.
Registered charity number 314179.