Human body parts ‘on-a-chip’ could revolutionize drug testing

Written on | ,

A new system will drastically shorten the time it takes to develop safe and effective medication

The U.S. Food and Drug Administration (FDA) approves only 13.8% of all tested drugs, and these numbers are even lower in “orphan” diseases that affect relatively few people. Part of the problem lies in the imperfect nature of preclinical drug testing that aims to exclude toxic effects and predetermine concentrations and administration routes before drug candidates can be tested on people. How new drugs move within the human body and are affected by it, and how drugs affect the body itself, cannot be predicted accurately enough in animal and standard in vitro studies.

“To solve this massive preclinical bottleneck problem, we need to become much more effective at setting the stage for drugs that are truly promising and rule out others that for various reasons are likely to fail in people,” explains Prof. Donald Ingber, M.D., Ph.D., founding director of Harvard University’s Wyss Institute for Biologically Inspired Engineering, co-author of two new studies on the subject published in Nature Biomedical Engineering.

Co-led by Dr. Ben Maoz of Tel Aviv University’s Department of Biomedical Engineering and Sagol School of Neuroscience and over 50 colleagues, a team of scientists at TAU and Harvard have now devised a functioning comprehensive multi-Organ-on-a-Chip (Organ Chip) platform that enables effective in-vitro-to-in-vivo translation (IVIVT) of human drug pharmacology.

Testing on humans, without humans

“We hope that this platform will enable us to bridge the gap on current limitations in drug development by providing a practical, reliable, relevant system for testing drugs for human use,” says Dr. Maoz, co-first author of both studies and former Technology Development Fellow at the Wyss Institute on the teams of Prof. Ingber and Prof. Kevin Kit Parker, Ph.D., the latter of whom is also a leading author of both studies.

In the first of two studies, the scientists developed the “Interrogator,” a robotic liquid transfer device to link individual “Organ Chips” in a way that mimics the flow of blood between organs in the human body.

Organ Chips are microfluidic devices composed of a clear flexible polymer the size of a computer memory stick that contains two parallel running hollow channels separated by a porous membrane and independently perfused with cell type-specific media. While one of the channels, the parenchymal channel, is lined with cells from a specific human organ or functional organ structure, the other one is lined with vascular endothelial cells presenting a blood vessel. The membrane allows the two compartments to communicate with each other and to exchange molecules like cytokines and growth factors, as well as drugs and drug products generated by organ-specific metabolic activities.

The team then applied their Interrogator automated linking platform and a new computational model they developed to three linked organs to test two drugs: nicotine and cisplatin.

Liver on a chip

“The modularity of our approach and availability of multiple validated Organ Chips for a variety of tissues for other human Body-on-Chip approaches now allows us to develop strategies to make realistic predictions about the pharmacology of drugs much more broadly,” says Prof. Ingber. “Its future use could greatly increase the success rates of Phase I clinical trials.”

The researchers accurately modeled the oral uptake of nicotine and intravenous uptake of cisplatin, a common chemotherapy medication, and their first passage through relevant organs with highly quantitative predictions of human pharmacokinetic and pharmacodynamic parameters. “The resulting calculated maximum nicotine concentrations, the time needed for nicotine to reach the different tissue compartments, and the clearance rates in the Liver Chips in our in vitro-based in silico model mirrored closely what had been measured in patients,” concludes Dr. Maoz.

The multidisciplinary research project is the culmination of a Defense Advanced Research Projects Agency (DARPA) project at the Wyss Institute. Several authors on both studies, including Prof. Ingber, are employees and hold equity in Emulate, Inc., a company that was spun out of the Wyss Institute to commercially develop Organ Chip technology.

Related posts

Want to Live Longer? Find Out if You Snore

May 15, 2022

TAU Researchers Invent Healthy Weapon Against Covid

April 14, 2022

Is the Vaccine Safe? Consult the Smart Sensor!

April 11, 2022

TAU Nanodrug Enables 2-in-1 Attack on Cancer

April 5, 2022

Minor Head Injury Leads to Chronic Post-Concussion Syndrome in 1 of 4 Children

March 28, 2022

Inventive Study to Develop Biological Solutions for Agriculture

March 27, 2022

TAU Technology Could Prevent Repeat Heart Valve Surgery

March 24, 2022

Israeli Breakthrough in Treating PTSD

February 22, 2022

Can Higher Temperatures Accelerate the Rate of Evolution?

February 16, 2022

Discovery May Enable Early Diagnosis of Alzheimer’s

February 15, 2022

TAU Breakthrough Offers New Hope to Help People With Paralysis Walk Again

February 3, 2022

Ketogenic Diet Likely to Reduce Damage from Traumatic Brain Injuries

January 25, 2022

Reading Tea Leaves

January 25, 2022

Viruses and Game Theory

January 24, 2022

What’s The Link Between Electrical Voltage and Brain Adaptability?

January 23, 2022

As Pandemic Persists, TAU Forges Ahead with COVID-19 Research on All Fronts

December 30, 2021

Rising Temperatures Fuel Increase in Violence: TAU Study

December 26, 2021

Medicinal Cannabis Oil Effective for Treating Autism

December 22, 2021

Parent Smartphone Use Could Harm Child Development

December 19, 2021

Breakthrough TAU Discovery Key to Reversing ALS

December 16, 2021

Experimental Drug Displays Effectiveness in Treating Symptoms of Autism and Alzheimer’s Disease

December 15, 2021

Seaweed – A Promising Defense Against Covid-19

December 15, 2021

New Ethical Code for World Research of Ancient DNA

December 14, 2021

Saving Lives with Artificial Intelligence

December 9, 2021

TAU Experts on Omicron: “Don’t Panic”

December 7, 2021

Tired of The Lies?

November 23, 2021

Britain and Israel Team Up on Challenge of Healthy Ageing

November 10, 2021

TAU Researchers Identify COVID Proteins that Cause Strokes and Heart Attacks

November 8, 2021

Can’t Multitask Anymore?

October 6, 2021

Why Do We Squabble Over The AC?

October 5, 2021

The Immune System’s Double Agents

October 5, 2021

Help A Friend Out?

September 30, 2021

Using ‘Good’ Bacteria to Fight ‘Bad’ Bacteria

September 29, 2021

Recruiting ‘Fighting Cells’ to Destroy Tumors

September 14, 2021

TAU Team Reverses Early Signs of Alzheimer’s

September 10, 2021

Nicotine Testing of Children Curbs Parents’ Smoking

September 5, 2021

Want to Fall in Love? Step Outside in The Sun

August 31, 2021

The Silent Prophets

August 31, 2021

First 3D-bioprinting of entire active tumor

August 18, 2021

New Warning Sign for Breast Cancer

August 6, 2021

COVID-19 Immunity Varies Among Genders and Age Groups

July 26, 2021

Tel Aviv Bats Have More Fun

July 22, 2021

New study found differences between women and men in the level of COVID-19 antibodies

July 15, 2021

A world first: Technology that restores the sense of touch in nerves damaged as a result of amputation or injury

July 15, 2021

TAU Medical Student to Swim for Israel at Summer Olympics

July 15, 2021

New nanotech from TAU produces “healthy” electric current from the human body itself

July 9, 2021

Introducing the world’s thinnest technology – only two atoms thick

July 2, 2021

Want to Live a Long Life? Consider Investing in Your Marriage.

July 2, 2021

A world first: Targeted delivery of therapeutic RNAs only to cancer cells, with no harm caused to healthy cells

June 30, 2021

Combating Antibiotic Resistance

June 22, 2021

Pursuing the Unknown

Copyright ©  Tel Aviv University Trust. All rights reserved.
Registered charity number 314179.