TAU Scientists Print First 3D Heart Using Patient’s Own Cells and Materials

Written on |

Engineered heart completely matches the immunological, cellular, biochemical and anatomical properties of the patient

In a major medical breakthrough, Tel Aviv University researchers have “printed” the world’s first 3D vascularised engineered heart using a patient’s own cells and biological materials. Their findings were published on April 15 in a study in Advanced Science.

Until now, scientists in regenerative medicine — a field positioned at the crossroads of biology and technology — have been successful in printing only simple tissues without blood vessels.

“This is the first time anyone anywhere has successfully engineered and printed an entire heart replete with cells, blood vessels, ventricles and chambers,” says Prof. Tal Dvir of TAU’s School of Molecular Cell Biology and Biotechnology, Department of Materials Science and Engineering, Center for Nanoscience and Nanotechnology and Sagol Center for Regenerative Biotechnology, who led the research for the study.

Heart disease is the leading cause of death among both men and women in the United States. Heart transplantation is currently the only treatment available to patients with end-stage heart failure. Given the dire shortage of heart donors, the need to develop new approaches to regenerate the diseased heart is urgent.

“This heart is made from human cells and patient-specific biological materials. In our process these materials serve as the bioinks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models,” Prof. Dvir says. “People have managed to 3D-print the structure of a heart in the past, but not with cells or with blood vessels. Our results demonstrate the potential of our approach for engineering personalized tissue and organ replacement in the future.”

Research for the study was conducted jointly by Prof. Dvir, Dr. Assaf Shapira of TAU’s Faculty of Life Sciences and Nadav Moor, a doctoral student in Prof. Dvir’s lab.

 

​”At this stage, our 3D heart is small, the size of a rabbit’s heart,” explains Prof. Dvir. “But larger human hearts require the same technology.”

The secret to a new heart

For the research, a biopsy of fatty tissue was taken from patients. The cellular and a-cellular materials of the tissue were then separated. While the cells were reprogrammed to become pluripotent stem cells, the extracellular matrix (ECM), a three-dimensional network of extracellular macromolecules such as collagen and glycoproteins, were processed into a personalized hydrogel that served as the printing “ink.”

After being mixed with the hydrogel, the cells were efficiently differentiated to cardiac or endothelial cells to create patient-specific, immune-compatible cardiac patches with blood vessels and, subsequently, an entire heart.

According to Prof. Dvir, the use of “native” patient-specific materials is crucial to successfully engineering tissues and organs.

“The biocompatibility of engineered materials is crucial to eliminating the risk of implant rejection, which jeopardizes the success of such treatments,” Prof. Dvir says. “Ideally, the biomaterial should possess the same biochemical, mechanical and topographical properties of the patient’s own tissues. Here, we can report a simple approach to 3D-printed thick, vascularized and perfusable cardiac tissues that completely match the immunological, cellular, biochemical and anatomical properties of the patient.”

What organ would you like?

The researchers are now planning on culturing the printed hearts in the lab and “teaching them to behave” like hearts, Prof. Dvir says. They then plan to transplant the 3D-printed heart in animal models.

“We need to develop the printed heart further,” he concludes. “The cells need to form a pumping ability; they can currently contract, but we need them to work together. Our hope is that we will succeed and prove our method’s efficacy and usefulness.

 

“Maybe, in ten years, there will be organ printers in the finest hospitals around the world, and these procedures will be conducted routinely.”

Related posts

Want to Live Longer? Find Out if You Snore

May 15, 2022

TAU Researchers Invent Healthy Weapon Against Covid

April 14, 2022

Is the Vaccine Safe? Consult the Smart Sensor!

April 11, 2022

TAU Nanodrug Enables 2-in-1 Attack on Cancer

April 5, 2022

Minor Head Injury Leads to Chronic Post-Concussion Syndrome in 1 of 4 Children

March 28, 2022

Inventive Study to Develop Biological Solutions for Agriculture

March 27, 2022

TAU Technology Could Prevent Repeat Heart Valve Surgery

March 24, 2022

Israeli Breakthrough in Treating PTSD

February 22, 2022

Can Higher Temperatures Accelerate the Rate of Evolution?

February 16, 2022

Discovery May Enable Early Diagnosis of Alzheimer’s

February 15, 2022

TAU Breakthrough Offers New Hope to Help People With Paralysis Walk Again

February 3, 2022

Ketogenic Diet Likely to Reduce Damage from Traumatic Brain Injuries

January 25, 2022

Reading Tea Leaves

January 25, 2022

Viruses and Game Theory

January 24, 2022

What’s The Link Between Electrical Voltage and Brain Adaptability?

January 23, 2022

As Pandemic Persists, TAU Forges Ahead with COVID-19 Research on All Fronts

December 30, 2021

Rising Temperatures Fuel Increase in Violence: TAU Study

December 26, 2021

Medicinal Cannabis Oil Effective for Treating Autism

December 22, 2021

Parent Smartphone Use Could Harm Child Development

December 19, 2021

Breakthrough TAU Discovery Key to Reversing ALS

December 16, 2021

Experimental Drug Displays Effectiveness in Treating Symptoms of Autism and Alzheimer’s Disease

December 15, 2021

Seaweed – A Promising Defense Against Covid-19

December 15, 2021

New Ethical Code for World Research of Ancient DNA

December 14, 2021

Saving Lives with Artificial Intelligence

December 9, 2021

TAU Experts on Omicron: “Don’t Panic”

December 7, 2021

Tired of The Lies?

November 23, 2021

Britain and Israel Team Up on Challenge of Healthy Ageing

November 10, 2021

TAU Researchers Identify COVID Proteins that Cause Strokes and Heart Attacks

November 8, 2021

Can’t Multitask Anymore?

October 6, 2021

Why Do We Squabble Over The AC?

October 5, 2021

The Immune System’s Double Agents

October 5, 2021

Help A Friend Out?

September 30, 2021

Using ‘Good’ Bacteria to Fight ‘Bad’ Bacteria

September 29, 2021

Recruiting ‘Fighting Cells’ to Destroy Tumors

September 14, 2021

TAU Team Reverses Early Signs of Alzheimer’s

September 10, 2021

Nicotine Testing of Children Curbs Parents’ Smoking

September 5, 2021

Want to Fall in Love? Step Outside in The Sun

August 31, 2021

The Silent Prophets

August 31, 2021

First 3D-bioprinting of entire active tumor

August 18, 2021

New Warning Sign for Breast Cancer

August 6, 2021

COVID-19 Immunity Varies Among Genders and Age Groups

July 26, 2021

Tel Aviv Bats Have More Fun

July 22, 2021

New study found differences between women and men in the level of COVID-19 antibodies

July 15, 2021

A world first: Technology that restores the sense of touch in nerves damaged as a result of amputation or injury

July 15, 2021

TAU Medical Student to Swim for Israel at Summer Olympics

July 15, 2021

New nanotech from TAU produces “healthy” electric current from the human body itself

July 9, 2021

Introducing the world’s thinnest technology – only two atoms thick

July 2, 2021

Want to Live a Long Life? Consider Investing in Your Marriage.

July 2, 2021

A world first: Targeted delivery of therapeutic RNAs only to cancer cells, with no harm caused to healthy cells

June 30, 2021

Combating Antibiotic Resistance

June 22, 2021

Pursuing the Unknown

Copyright ©  Tel Aviv University Trust. All rights reserved.
Registered charity number 314179.